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Abstract

A new infinite set of commuting additional (“ghost”) symmetries is proposed for the KP-type integrable hierarchy. These
symmetries allow for a Lax representation in which they are realized as standard isospectral flows. This gives rise to a
new double-KP hierarchy embedding “ghost” and original KP-type Lax hierarchies connected to each other via a “duality”
mapping exchanging the isospectral and “ghost” “times”. A new representation of the 2D Toda lattice hierarchy as a special
Darboux1Bäcklund orbit of the double-KP hierarchy is found and parametrized entirely in terms of (adjoint) eigenfunctions
of the original KP subsystem. c© 1998 Published by Elsevier Science B.V.

1. Introduction

Additional non-isospectral symmetries [1,2] of Kadomtsev1Petviashvili (KP) type hierarchies of integrable
nonlinear evolution equations play a prominent rôle, especially, in view of the connection between integrable
systems and non-perturbative string theory (see Ref. [3] and references therein). Fixed points of subalgebras
of additional symmetries, realized in the context of (multi-)matrix models of string theory via the so-called
Virasoro and W-constraints, allow us to express the tau-functions of the underlying integrable hierarchies as
partition functions of statistical mechanical models of random matrices.

Besides the above principal applications, there exist other interesting aspects of additional symmetries of
integrable hierarchies which deserve further detailed study. The purpose of the present Letter is to study Abelian
subalgebras of additional symmetries, often called also “ghost” symmetries. The most succinct formulation of
additional symmetries in KP-type hierarchies is given in Refs. [2] in the language of the algebra of pseudo-
differential operators which is the formalism we are employing in the present Letter. Since, by construction,
commuting “ghost” symmetries commute also with the isospectral flows, it is natural to consider them as
additional KP “times”. More precisely, we are interested in infinite sets of commuting “ghost” symmetries.
Then, the natural idea arises to reformulate the infinite number of commuting “ghost” symmetry flows as
ordinary isospectral flows of some other “ghost” KP integrable hierarchy. In this way the original isospectral
flows of the initial KP system themselves will play the rôle of additional commuting “ghost” symmetries of the
second “ghost” KP hierarchy. Thus we obtain a new double-KP integrable system embedding both the original
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and the “ghost” KP hierarchies in such a way that the latter appear “dual” to each other under interchanging
of isospectral and “ghost”-flow “times”. It is this property of “duality” which is the most characteristic feature
of the present approach. As a first application we present a simple construction of the two-dimensional Toda
lattice hierarchy as a special non-standard Darboux1Bäcklund orbit of the new double-KP continuum hierarchy.

Let us stress the following point. Infinite sets of commuting additional (“ghost”) symmetries, extending the
original KP hierarchy, have also been considered in Refs. [4]. The principal difference between the above
approaches and the present construction is as follows. In Ref. [4] the Lax operators are always given in terms
of pseudo-differential operators acting in one and the same space, i.e., pseudo-differential operators with respect
to x ≡ t(1)

1 (the first evolution parameter of the first subsystem of KP “times”). In other words, one subsystem
of evolution parameters plays in Ref. [4] a distinguished rôle. Unlike this, in the present approach both the
isospectral KP flows of the initial KP hierarchy as well as its “ghost” symmetry flows appear totally symmetric
within the full double-KP system. Both types of flows are formulated in terms of Lax operators acting in two
different spaces: pseudo-differential operators with respect to x ≡ t1 (the first evolution parameter of the initial
KP system) and x̄ ≡ t̄1 (the first “ghost” symmetry flow, which becomes the first evolution parameter of the
second “ghost” KP system), respectively. Moreover, our construction manifestly exhibits the pertinent “duality”
between the two ordinary KP subsystems within the double-KP hierarchy which is lacking in Ref. [4].

2. Background on KP hierarchy and “ghost” symmetries

In what follows we use the Sato formalism of pseudo-differential operator calculus (see, e.g., Ref. [5]) to
describe KP-type integrable hierarchies. The main object is the pseudo-differential Lax operator L obeying an
infinite set of evolution equations 1 with respect to the KP “times” (t) ≡ (t1 ≡ x, t2, . . .),

L = D +
∞∑
i=1

uiD
−i ,

∂L
∂tl

= [ (Ll)+ , L ] , l = 1, 2, . . . . (1)

Equivalently, one can represent (1) in terms of the dressing operator W whose pseudo-differential series are
directly expressed in terms of the so-called tau-function τ(t),

L = WDW−1 ,
∂W

∂tl
= −(Ll)−W , W =

∞∑
n=0

pl(−[∂])τ(t)
τ(t)

D−l , (2)

with the notation [y] ≡ (y1, y2/2, y3/3, . . .) for any multi-variable (y) ≡ (y1, y2, y3, . . .) and with pk(t) being
the Schur polynomials, exp

∑
l>1 λ

ltl =
∑

k>0 λ
kpk(t). The tau-function is related to the Lax operator as

∂x
∂

∂tl
ln τ(t) = ResLl . (3)

In the present approach a crucial notion is that of (adjoint) eigenfunctions ((adjoint) eigenfunctions) Φ(t),
Ψ(t) of the KP hierarchy satisfying

∂Φ

∂tk
= Lk+(Φ) ,

∂Ψ

∂tk
= −(L∗)k+(Ψ) . (4)

1 We shall employ the following notations: for any (pseudo-)differential operator A and a function f, the symbol A(f) will indicate
action of A on f, whereas the symbol Af will denote just the operator product of A with the zero-order (multiplication) operator f. The
symbol D stands for the differential operator ∂/∂x, whereas ∂ ≡ ∂x will denote the derivative on a function. Further, in what follows the
subscripts (±) of any pseudo-differential operator A =

∑
j
ajDj denote its purely differential part (A+ =

∑
j>0

ajDj) or its purely

pseudo-differential part (A− =
∑

j>1
a−jD−j), respectively.
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The (adjoint) Baker1Akhiezer (BA) “wave” functions pBA(t, λ) = W(exp(ξ(t, λ))) and p∗BA(t, λ) =
(W∗)−1(exp(−ξ(t, λ))) (with ξ(t, λ) ≡

∑∞
l=1 tlλ

l) are (adjoint) eigenfunctions which, in addition, also

satisfy the spectral equations of the form L(∗)(p(∗)
BA (t, λ)) = λp(∗)

BA (t, λ). As shown in Ref. [6], any (adjoint)
eigenfunction possesses a spectral representation of the form

Φ(t) =
∫
δλϕ(λ)pBA(t, λ) , Ψ(t) =

∫
δλϕ∗(λ)p∗BA(t, λ) , (5)

with spectral “densities” ϕ(∗)(λ) given by

ϕ(λ) =
1
λ
p∗BA(t′, λ)Φ(t′ + [λ−1]) , ϕ∗(λ) =

1
λ
pBA(t′, λ)Ψ(t′ − [λ−1]) , (6)

where the multi-time t′ = (t′1, t
′
2, . . .) is taken at some arbitrary fixed value (as shown in Ref. [6], the spectral

integrals (5) themselves do not depend on the choice of t′).
The spectral densities (6) can also be expressed [6] in terms of the so-called squared eigenfunction potential

S(Φ,Ψ) [7] which yields a well-defined unique expression for the inverse derivative ∂−1
x of a product of

arbitrary pair of eigenfunction and adjoint eigenfunction [6],

∂−1(Φ(t)Ψ(t)) ≡ S(Φ,Ψ) = −
∫ ∫

δλ δµϕ∗(λ)ϕ(µ)
eξ(t,µ)−ξ(t,λ)

λ− µ
e
∑∞

1
(1/l)(λ−l−µ−l)∂/∂tlτ(t)

τ(t)
. (7)

This will always be the case for all instances of appearance of inverse derivatives in the sequel.
Finally, let us recall the basic facts about “ghost” symmetries of the generic KP hierarchy. A “ghost”

symmetry is defined through an action of a vector field ∂̂α on the KP Lax operator or the dressing operator
[8],

∂̂αL = [Mα , L ] , ∂̂αW =MαW , Mα ≡
∑
a∈{α}

ΦaD
−1Ψa , (8)

where (Φa,Ψa)a∈{α} are some set of functions indexed by {α}. Commutativity of ∂̂α with ∂/∂tl implies that
(Φa,Ψa)a∈{α} is a set of pairs of (adjoint) eigenfunctions of L.

Now, for the general (adjoint) eigenfunctions Φ,Ψ of L we define new generalized “ghost” symmetry flows,

∂̂αΦ =
∑
a∈{α}

Φa∂
−1(ΨaΦ)−F(α) , ∂̂αΨ =

∑
a∈{α}

Ψa∂
−1(ΦaΨ) + F∗(α) . (9)

Note the additional inhomogeneous terms F(α), F∗(α) which themselves are (adjoint) eigenfunctions of L (1)
and which are absent in the traditional approach of Refs. [8,7] (see, however, Ref. [9], where inhomogeneous
terms of the type in Eq. (9) have been considered in the particular case of constrained KP hierarchies). It
is crucial for what follows that their presence is in general allowed by requirements of commutativity of two
different “ghost” flows ∂̂α and ∂̂β and the integrability condition

[
∂̂α −Mα , ∂̂β −Mβ

]
= 0 following from

the definition (8).

3. Construction of the “ghost”-flow KP hierarchy

Consider an infinite system of independent (adjoint) eigenfunctions {Φj,Ψj}∞j=1 of L and define the following
infinite set of the “ghost” symmetry flows,

∂

∂t̄s
L = [Ms , L ] , Ms =

s∑
j=1

Φs−j+1D
−1Ψj , (10)
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∂

∂t̄s
Φk =

s∑
j=1

Φs−j+1∂
−1(ΨjΦk)− Φk+s ,

∂

∂ t̄s
Ψk =

s∑
j=1

Ψj∂
−1(Φs−j+1Ψk) +Ψk+s , (11)

∂

∂t̄s
F =

s∑
j=1

Φs−j+1∂
−1(ΨjF) ,

∂

∂ t̄s
F∗ =

s∑
j=1

Ψj∂
−1(Φs−j+1F

∗) , (12)

where s, k = 1, 2, . . ., and (F∗) F denote generic (adjoint) eigenfunctions which do not belong to the “ghost”
symmetry generating set {Φj,Ψj}∞j=1. With the choice of the inhomogeneous terms as in (11) it is easy to
show that the “ghost” symmetry flows ∂/∂t̄s do indeed commute, i.e., the ∂-pseudo-differential operators Ms

(10) satisfy

∂

∂t̄s
Mr −

∂

∂t̄r
Ms − [Ms ,Mr ] = 0 . (13)

In particular, for the first “ghost” symmetry flow ∂/∂t̄1 ≡ ∂̄ , we have

∂̄Φk = Φ1∂
−1(Ψ1Φk)− Φk+1 , ∂̄Ψk = Ψ1∂

−1(Φ1Ψk) +Ψk+1 , ∂̄F = Φ1∂
−1(Ψ1F) . (14)

Eqs. (14), in turn, imply the following 2D Toda lattice (2DTL) like equations for the Wronskians of Φj’s and
Ψj’s, respectively,

∂∂̄ lnWk = Φ1Ψ1 −
Wk+1Wk−1

Wk
2 , ∂∂̄ lnWk = Φ1Ψ1 +

Wk+1Wk−1

Wk
2 . (15)

Here and below, use will be made of the following short-hand notations for the Wronskian-type determinants,

Wk ≡ Wk [Φ1, . . . , Φk] = det ‖∂α−1Φβ‖ , α, β = 1, . . . , k , Wk ≡ Wk [Ψ1, . . . , Ψk] , (16)

Wk(F) ≡ Wk+1 [Φ1, . . . , Φk, F] , Wk(F
∗) ≡ Wk+1

[
Ψ1, . . . , Ψk, F

∗] , (17)

W̃
[
f1, . . . , fk+1;f

]
≡ det

k+1

∥∥∥∥ ∂α−1fβ ∂α−1fk+1

∂−1(fβ f) ∂−1(fk+1 f)

∥∥∥∥ . (18)

Consider now the τ-function of L and let us act with ∂/∂t̄s on both sides of (3), obtaining

∂

∂t̄s
ln τ = −

s∑
j=1

∂−1(Φs−j+1Ψj) , (19)

using (10) as well as the tr-flow equations (∂/∂tr)Ms = [Lr+ ,Ms ]−. In particular, for s = 1, Eq. (19)
together with (14) yields

∂̄ ln τ = −∂−1(Φ1Ψ1) , ∂̄ ln(Φ1τ) = −Φ2

Φ1
, ∂̄ ln(Ψ1τ) =

Ψ2

Ψ1
. (20)

Taking into account the first equation (20), we can rewrite (15) in the standard 2DTL form,

∂∂̄ ln(Wkτ) = −(Wk+1τ)(Wk−1τ)
(Wkτ)2

, ∂∂̄ ln(Wkτ) =
(Wk+1τ)(Wk−1τ)

(Wkτ)2
. (21)

Using the last equations of (14) and (15), we can reexpress the action of the ∂-pseudo-differential operators
Ms (10) on eigenfunctions as ordinary ∂̄-differential operators.
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Lemma 1. For any generic eigenfunction F of L , which does not appear within the set {Φj} in (10) (and
whose “ghost” symmetry flows are given by last equation of (12)), we have

∂

∂t̄s
(F/Φ1) = M̄s(F/Φ1) , (22)

M̄s ≡
s∑
j=1

( s∑
k=j

Φs−k+1

Φ1

Wj−1(Ψk)
Wj

)(
D̄ − ∂̄ ln

Wj−1

Wj−2

)
· · · (D̄ − ∂̄ lnΨ1)

(
D̄ − ∂̄ ln

1
Φ1

)
− ∂

∂t̄s
lnΦ1 ,

(23)

where the ∂̄-differential operators M̄s satisfy the standard form of Zakharov1Shabat (ZS) “zero-curvature”
equations with respect to the t̄s-flows,

∂

∂t̄s
M̄r −

∂

∂t̄r
M̄s − [ M̄s , M̄r ] = 0 . (24)

Eq. (24) is a consequence of (13).
According to Ref. [10], for any ZS system (as in (24)) there always exists a unique triangular coordinate

transformation in the space of evolution parameters such that the (transformed) ZS differential operators acquire
the standard KP form, i.e., M̄s = (L̄s)+ for some KP-type ∂̄ -pseudo-differential operator L̄. It turns out that the
“ghost” ZS operators (23) have already the right form.

Proposition 1. The ∂̄ -differential ZS operators M̄s (23) can be expressed, using the short-hand notations
(16), as

M̄s = (L̄s)+ , L̄ = D̄ +
∞∑
k=1

bk

(
D̄ + ∂̄ ln

Wk+1

Wk

)−1

· · ·
(
D̄ + ∂̄ ln

W2

Φ1

)−1

, (25)

b1 = −∂̄(Φ2/Φ1) ,

bk = −∂̄(Φk+1/Φ1) +
∑
m

P (k)
m (∂̄α(Φl/Φ1) ; ∂̄(Ws/Ws−1))

Q(k)
m (Ws/Ws−1)

for k = 2, 3, . . . , (26)

where P (k)
m ,Q(k)

m denote monomials with respect to the indicated arguments with α > 0 , 2 6 l 6 k , 1 6 s 6 k.

Eqs. (25) and (22) imply

Corollary 1. For any generic eigenfunction F of the initial L (1), which does not appear within the “ghost”-
flow generating set {Φj} in (10), the function F̄ ≡ F/Φ1 is automatically an eigenfunction of the “ghost” Lax
operator L̄ (25).

Remark. The pseudo-differential series of the original Lax operator L (1) can always be rearranged into a
form similar to (25),

L = D +
∞∑
k=1

ak

(
D − ∂ ln

Wk+1

Wk

)−1

· · ·
(
D − ∂ ln

W2

Ψ1

)−1

, (27)

with appropriate coefficients ak. Expressions (27), (25) are very suggestive when discussing Darboux1
Bäcklund (DB) orbits and the connection to the 2DTL to which we now turn our attention.
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4. Darboux–Bäcklund orbits

Let us first introduce the following non-standard orbit of successive DB transformations for the original KP
system,

L(n+ 1) = T1(n)L(n)T−1
1 (n) , T1(n) = Φ1DΦ

−1
1 ≡ Φ(n)

1 DΦ(n)
1

−1
, (28)

Φn+1)
l = Φ(n)

1 ∂

(
Φ(n)
l+1

Φ(n)
1

)
, l > 1 ,

Ψ(n+1)
1 =

1

Φ(n)
1

, Ψ(n+1)
j = − 1

Φ(n)
1

∂−1(Φ(n)
1 Ψ(n)

j−1) , j > 2 , (29)

for transformations in “positive” direction, as well as adjoint DB transformations, i.e., transformations in
“negative” direction,

L(n− 1) = T̂1(n)L(n)T̂−1
1 (n) , T̂1(n) = Ψ1DΨ

−1
1 ≡ Ψ(n)

1 DΨ(n)
1

−1
, (30)

Φ(n−1)
1 =

1

Ψ(n)
1

, Φ(n−1)
l =

1

Ψ(n)
1

∂−1(Ψ(n)
1 Φ(n)

l−1) , l > 2 ,

Ψ(n−1)
j = −Ψ(n)

1 ∂

(
Ψ(n)
j+1

Ψ(n)
1

)
, j > 1 . (31)

In what follows, the DB “site” index (n) on (adjoint) eigenfunctions will be skipped for brevity whenever this
would not lead to ambiguities.

Remark. Let us stress the non-canonical form of the (adjoint) DB transformations (29), (31) on the “ghost”
symmetry generating (adjoint) eigenfunctions. On the other hand, for a generic eigenfunction F the (adjoint)
DB transformations read as usual [7],

F (n+1) = Φ(n)
1 ∂

(
F (n)

Φ(n)
1

)
= (∂ − ∂ lnΦ(n)

1 )F (n) , F (n−1) =
1

Ψ(n)
1

∂−1(Ψ(n)
1 F (n)) . (32)

We now obtain the following important proposition.

Proposition 2. “Ghost” symmetries (10) commute with DB transformations (28)1(31), i.e., the “ghost”
symmetry generators (10) Ms ≡Ms(n) =

∑s
j=1Φ

(n)
s−j+1D

−1Ψ(n)
j transform on the DB-orbit as

Ms(n) −→Ms(n± 1) =
(∧)
T (n)Ms(n)

(∧)
T
−1

(n) +
(
∂

∂t̄s

(∧)
T (n)

)
(∧)
T
−1

(n)

=
s∑
j=1

Φ(n±1)
s−j+1D

−1Ψ(n±1)
j . (33)

The “ghost” KP Lax operator (25) transforms, accordingly, as

L̄(n+ 1) =

(
1

Φ(n+1)
1

D̄−1Φ(n+1)
1

)
L̄(n)

(
1

Φ(n+1)
1

D̄Φ(n+1)
1

)
. (34)
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Iterating the (adjoint) DB transformations (29), (31), we obtain

Φ(n+k)
s =

Wk+1[Φ(n)
1 , . . . , Φ(n)

k , Φ(n)
k+s]

Wk[Φ
(n)
1 , . . . , Φ(n)

k ]
, k > 1

Ψ(n+k)
s = −

W̃k[Φ
(n)
1 , . . . , Φ(n)

k ;Ψ(n)
s−k]

Wk[Φ
(n)
1 , . . . , Φ(n)

k ]
, 1 6 k 6 s− 1 ,

Ψ(n+k)
s = (−1)s−1Wk−1[Φ(n)

1 , . . . , Φ(n)
k−s, Φ

(n)
k−s+2, . . . , Φ

(n)
k ]

Wk[Φ
(n)
1 , . . . , Φ(n)

k ]
, k > s , (35)

Φ(n−k)
s = (−1)k−1 W̃k[Ψ

(n)
1 , . . . , Ψ(n)

k ;Φ(n)
s−k]

Wk[Ψ
(n)
1 , . . . , Ψ(n)

k ]
, 1 6 k 6 s− 1 ,

Φ(n−k)
s = (−1)s−k

Wk−1[Ψ(n)
1 , . . . , Ψ(n)

k−s, Ψ
(n)
k−s+2, . . . , Ψ

(n)
k ]

Wk[Ψ
(n)
1 , . . . , Ψ(n)

k ]
, k > s ,

Ψ(n−k)
s = (−1)k

Wk+1[Ψ(n)
1 , . . . , Ψ(n)

k , Ψ(n)
k+s]

Wk[Ψ
(n)
1 , . . . , Ψ(n)

k ]
, k > 1 , (36)

where s > 1, and we have used notations (16)1(18) for the Wronskian(-like) determinants.

5. Double-KP hierarchy

We now are able to introduce the double-KP hierarchy and its tau-functions. We first construct an infinite
set of (adjoint) eigenfunctions (Φ̄j, Ψ̄j)∞j=1 for the “ghost” Lax operator L̄ (25) in terms of the initial set of
(adjoint) eigenfunctions (Φj,Ψj)∞j=1 of L defining the “ghost” symmetry flows (10)1(12). Taking F = const in

(22), we find that Φ̄(n)
1 ≡ 1/Φ(n)

1 = Ψ(n+1)
1 is an eigenfunction of L̄(n) for any “site” n on the DB-orbit (28)1

(31). Therefore, taking into account (34), we deduce that Ψ̄(n−1)
1 ≡ 1/Φ̄(n)

1 = Φ(n)
1 is an adjoint eigenfunction

of L̄(n − 1) again for any DB “site” n. The rest of the (adjoint) eigenfunctions Φ̄j, Ψ̄j for L̄ (j > 2) is
constructed in such a way that their DB-orbit will have the following form consistent with the DB-orbit of L̄
(34),

Φ̄(n−1)
j = Φ̄(n)

1 ∂̄

(
Φ̄(n)
j+1

Φ̄(n)
1

)
, j > 1 ,

Ψ̄(n−1)
1 =

1

Φ̄(n)
1

, Ψ̄(n−1)
l = − 1

Φ̄(n)
1

∂̄−1(Φ̄(n)
1 Ψ̄(n)

l−1) , l > 2 , (37)

Φ̄(n+1)
1 =

1

Ψ̄(n)
1

, Φ̄(n+1)
l =

1

Ψ̄(n)
1

∂̄−1(Ψ̄(n)
1 Φ̄(n)

l−1) , l > 2 ,

Ψ̄(n+1)
j = −Ψ̄(n)

1 ∂̄

(
Ψ̄(n)
j+1

Ψ̄(n)
1

)
, j > 1 , (38)

F̄ (n−1) = Φ̄(n)
1 ∂̄

(
F̄ (n)

Φ̄(n)
1

)
= (∂̄ − ∂̄ ln Φ̄(n)

1 )F̄ (n) , (39)
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where F̄ is a generic eigenfunction of L̄.
The explicit form of

{
Φ̄j, Ψ̄j

}
reads using notations (16), (17),

Φ̄(n)
l ≡ Φ̄l = (−1)l

1
Φ1
∂̄−1Φ1Ψ1∂̄

−1W2

Ψ2
1

∂̄−1 W3Ψ1

(W2)2
∂̄−1 · · · ∂̄−1Wl−1Wl−3

(Wl−2)2
, l > 2 , (40)

Φ̄(n)
1 ≡ Φ̄1 =

1
Φ1

, Ψ̄(n)
j ≡ Ψ̄j = (−1)j−1W2

Φ1
∂̄−1 W3Φ1

(W2)2
∂̄−1 · · · ∂̄−1Wj+1Wj−1

(Wj)2
, j > 1 . (41)

Remark. For later use let us explicitly write down the k-step iteration of DB transformations on Φ(n)
1 , Φ̄(n)

1 ,

Φ(n−k)
1 = (−1)k−1Wk−1

Wk
, Φ̄(n+k)

1 =
1

Φ(n+k)
1

=
Wk−1

Wk
. (42)

Collecting the above results, we obtain:

Proposition 3. Both Lax operators, the initial L (27) and the “ghost” one L̄ (25), define a double-KP
integrable system,

∂

∂tr
L = [ (Lr)+ , L ] ,

∂

∂ t̄s
L = [Ms , L ] ,

∂

∂ t̄s
L̄ = [ (L̄s)+ , L̄ ] ,

∂

∂tr
L̄ = [M̄r , L̄ ] , (43)

where Ms was introduced in (10) and M̄r is its “dual” counterpart defined in terms of the L̄ (adjoint)
eigenfunctions (40), (41): M̄r =

∑r
i=1 Φ̄r−i+1D̄

−1Ψ̄i. Accordingly, for generic eigenfunctions F, F̄ of L and

L̄, respectively, we have

∂

∂tr
F = (Lr)+(F) ,

∂

∂ t̄s
F =Ms(F) ,

∂

∂ t̄s
(F/Φ1) = (L̄s)+(F/Φ1) , (44)

∂

∂t̄s
F̄ = (L̄s)+(F̄) ,

∂

∂tr
F̄ = M̄r(F̄) ,

∂

∂tr
(Φ1F̄) = (Lr)+(Φ1F̄) . (45)

Corollary 2. According to Proposition 3 and (10), there exists a duality mapping between the two scalar KP
subsystems of (43) defined by L and L̄, respectively, under the exchange (t)↔ (t̄), Φj ↔ Φ̄j , Ψj ↔ Ψ̄j .

There exists a simple relation between the tau-functions of L and L̄. Namely, using (11) and (14) in Eq.
(23) for s = 2 leads to M̄2 ≡ L̄2

+ = ∂̄2−2∂̄(Φ2/Φ1), i.e., Res∂̄ L̄ = ∂̄2 ln τ̄ = −∂̄(Φ2/Φ1) which, upon comparing
with the second equation (20), implies for τ̄ of L̄: ∂̄2 ln τ̄ = ∂̄2 ln(Φ1τ). Applying duality (Corollary 2) to the
above equation and to the first equation in (20), we find ∂2 ln τ̄ = ∂2 ln(Φ1τ) and ∂∂̄ ln τ̄ = ∂∂̄ ln(Φ1τ). The
above relations can be generalized to the following proposition.

Proposition 4. The τ-function of ∂̄ -Lax operator L̄ (25) is expressed in terms of eigenfunctions and the
τ-function of the original ∂-Lax operator L (27) as follows,

τ̄(t, t̄) = Φ1(t, t̄) τ(t, t̄) ,
ps(−[∂̄])τ̄

τ̄
=
Φs+1

Φ1
, (46)
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or, introducing the “site” index of the DB-orbit (28)1(31): τ̄(n)(t, t̄) = τ(n+1)(t, t̄).

Recalling expressions (2) we derive from the second equation (46) a remarkably simple explicit parametriza-
tion of the second “ghost” KP subsystem of (43) in terms of eigenfunctions of the first initial KP system.

Corollary 3. The dressing operator W̄ for L̄ (25) has the following explicit form,

L̄ = W̄D̄W̄−1 , W̄ = 1 +
∞∑
s=1

Φs+1

Φ1
D̄−s , (47)

where {Φs}∞s=1 are the “ghost” symmetry generating eigenfunctions (10) of the original Lax operator (1).

Applying duality (Corollary 2) to Eqs. (47), we also get for the initial “dressing” operator W,

L = WDW−1 , W = 1 +
∞∑
s=1

Φ̄s+1

Φ̄1
D−s , (48)

where {Φ̄s}∞s=1 are the same as in (40). Therefore, we conclude from (47), (48) and (40), (41) that the whole
double-KP hierarchy (43) is parametrized entirely in terms of the infinite set {Φj,Ψj}∞j=1 of “ghost” symmetry
generating (adjoint) eigenfunctions (10) considered as functions of both original isospectral flow and “ghost”
symmetry flow parameters (t, t̄).

Finally, let us also note that the tau-functions of the double KP hierarchy (46) obey the following generalized
Fay identities which easily follow by matching the “spectral” representation (5) for any generic eigenfunction
F of the initial KP Lax operator (27) with the corresponding “spectral” representation of F̄ = F/Φ1 as
eigenfunction of the “ghost” Lax operator (25),

λ(µ− ν) τ(t− [κ−1], t̄− [λ−1]) τ̄(t, t̄− [µ−1]− [ν−1])

+ ν(λ− µ)τ(t− [κ−1], t̄− [ν−1])τ̄(t, t̄− [λ−1]− [µ−1])

+µ(ν − λ)τ(t− [κ−1], t̄− [µ−1])τ̄(t, t̄− [λ−1]− [ν−1]) = 0 , (49)

λ(µ− ν) τ̄(t− [λ−1], t̄− [κ−1]) τ(t− [µ−1]− [ν−1], t̄)

+ ν(λ− µ)τ̄(t− [ν−1], t̄− [κ−1])τ(t− [λ−1]− [µ−1], t̄)

+µ(ν − λ)τ̄(t− [µ−1], t̄− [κ−1]) τ(t− [λ−1]− [ν−1], t̄) = 0 . (50)

6. 2D Toda lattice hierarchy as Darboux–Bäcklund orbit of double-KP hierarchy

We now turn to the construction of the 2DTL as a special DB-orbit of the double-KP system (43). Recalling
Eqs. (42) allows us to rewrite Lax operator expressions (27), (25) in the form

L ≡ L(n) = D +
∞∑
k=1

ak(n)(D − ∂ lnΦ(n−k)
1 )−1 · · · (D − ∂ lnΦ(n−1)

1 )−1 , (51)

L̄ ≡ L̄(n) = D̄ +
∞∑
k=1

bk(n) (D̄− ∂̄ ln Φ̄(n+k)
1 )−1 · · · (D̄ − ∂̄ ln Φ̄(n+1)

1 )−1 , (52)

where we reintroduced the DB “site” index on the non-standard DB-orbit defined in (28)1(31).
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Now, taking into account (32) and (39), one can represent the action of L(n), L̄(n) (51), (52) on generic
eigenfunctions F (n), F̄ (n) at any fixed “site” n of the DB-orbit as action of infinite Jacobi-type matrices Qnm,
Q̄nm on infinite column vectors F (n) and F̄ (n) (k > 1 below),

L(n)(F (n)) = QnmF
(m) , L̄(n)(F̄ (n)) =

(
1

Φ(n)
1

Q̄nmΦ
(m)
1

)
F̄ (m) , (53)

Qn,n+k = δk,1 , Qn,n−k = ak(n) , Qnn = ∂ lnΦ(n)
1 , (54)

Q̄n,n−k = δk,1
Φ(n)

1

Φ(n−1)
1

= Φ1Ψ1δk,1 , Q̄n,n+k = bk(n)
Φ(n)

1

Φ(n+k)
1

= bk
Φ1Wk−1

Wk
, Q̄nn = −∂̄ lnΦ(n)

1 . (55)

Using (53), the (pseudo-)differential Lax equations of the double-KP hierarchy (43)1(45) for any fixed DB
“site” n can be equivalently represented as discrete Lax equations for the infinite Jacobi-type matrices (54),
(55),

Qnmpm = λpn ,
∂

∂tr
pn = (Qr

+)nmpm ,
∂

∂t̄s
pn = −(Q̄s

−)nmpm , (56)

∂

∂tr
Q = [ (Qr)+ , Q ] ,

∂

∂ t̄s
Q = [Q , (Q̄s)− ] ,

∂

∂ t̄s
Q̄ = [ Q̄ , (Q̄s)− ] ,

∂

∂tr
Q̄ = [ (Qr)+ , Q̄ ] , (57)

where we took the BA function as F , i.e., F (n)(t) = p(n)
BA (t, λ) ≡ pn, and where the subscripts (±) indicate

upper+diagonal/lower-triangular part of the corresponding matrices. The above equations are the Lax equations
for the 2DTL hierarchy [11] (see also Ref. [12]). Thus, we showed that the structure of the non-standard
DB-orbit (28)1(31) of the double-KP hierarchy coincides with that of the 2DTL hierarchy.

7. Outlook

In this Letter we presented our results on a new “ghost” symmetry structure of the KP system giving rise
to a duality between two related KP hierarchies embedded into a double-KP system. A detailed exposition
with complete proofs will appear elsewhere. It will also address a variety of further interesting issues: (a) the
relation (embedding into) of the present double-KP hierarchy (43) to multi-component matrix KP hierarchies
[11]; (b) the generalization of the present construction with several infinite sets of “ghost” symmetries; (c)
the relation to the random multi-matrix models [12]; (d) the supersymmetric generalization and obtaining a
consistent supersymmetric 2DTL hierarchy. The first part of task (d) has already been addressed in Ref. [13].
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